【文獻(xiàn)解讀】KI小鼠模型揭示腫瘤血管新生的新靶標(biāo)


10月30日,中科院生物化學(xué)與細(xì)胞生物學(xué)研究所周斌研究組在Cell Reports在線(xiàn)發(fā)表了最新成果“Apj+ vessels drive tumor growth and represent a tractable therapeutic target”。該研究利用Apj-CreER和Apj-DTRGFP-Luc基因敲入小鼠模型,分別建立皮下腫瘤移植模型、原位腫瘤移植模型、基因缺陷原位腫瘤模型和化合物誘導(dǎo)腫瘤模型,追蹤Apj的表達(dá)情況,發(fā)現(xiàn)Apj可以特異性地標(biāo)記大部分的腫瘤新生血管。該研究進(jìn)一步揭示腫瘤惡性增殖與血管新生的關(guān)系,進(jìn)而加深對(duì)腫瘤疾病的認(rèn)識(shí),同時(shí)也為靶向腫瘤新生血管的藥物研發(fā)提供更加堅(jiān)實(shí)的理論基礎(chǔ)。

?

圖片14.png


南模生物為該研究構(gòu)建了Apj-CreER和Apj-DTRGFP-Luc基因敲入小鼠模型。

?

研究背景

在各種臨床前和臨床研究中,抑制或破壞腫瘤血管生成已經(jīng)成為治療腫瘤的主要治療策略之一。但是,目前像血管內(nèi)皮生長(zhǎng)因子(VEGF)這樣的用于抑制血管生成的靶標(biāo),存在一定的不良脫靶風(fēng)險(xiǎn),因?yàn)樗鼘?duì)腫瘤組織和周?chē)=M織的血管都具有抑制作用。因此,如何靶向病理性新生血管成為迫切需要解決的問(wèn)題。

?

Apelin是在內(nèi)皮細(xì)胞表面上表達(dá)的G蛋白偶聯(lián)受體Apj的配體。2015年,周斌課題組發(fā)現(xiàn)盡管Apelin在發(fā)育過(guò)程中高度富集內(nèi)皮細(xì)胞,但在成體器官的內(nèi)皮細(xì)胞中顯著降低,僅在病理?xiàng)l件下,例如心肌梗塞或腫瘤生長(zhǎng)時(shí),內(nèi)皮細(xì)胞中的Apelin增加;而靶向表達(dá)Apelin的腫瘤內(nèi)皮細(xì)胞可以有效地限制腫瘤生長(zhǎng)。說(shuō)明Apelin-Apj軸是有潛力的治療靶點(diǎn)。

?

然而,由于Apelin是分泌肽,在成藥性上面臨諸多挑戰(zhàn)。Apj作為Apelin的受體,在細(xì)胞表面表達(dá),對(duì)于用小分子拮抗劑靶向治療相對(duì)更加容易。因此,這項(xiàng)研究針對(duì)Apj展開(kāi),并取得了可喜的結(jié)果。

?

小鼠模型

  • Apj-CreER

通過(guò)CRISPR/Cas9技術(shù)介導(dǎo)同源重組,將CreER表達(dá)框替換內(nèi)源性Apj基因的翻譯起始密碼子ATG,構(gòu)建Apj-CreER基因敲入小鼠模型。

圖片1.png?

Apj-CreER基因敲入小鼠構(gòu)建策略

?

  • Apj-DTRGFP-Luc

通過(guò)CRISPR/Cas9技術(shù)介導(dǎo)同源重組,將DTRGFP和luciferase熒光素酶表達(dá)框替換內(nèi)源性Apj基因的翻譯起始密碼子ATG,構(gòu)建Apj-DTRGFP-Luc基因敲入小鼠模型。


圖片2.png?

Apj-DTRGFP-Luc基因敲入小鼠構(gòu)建策略

?

?

研究結(jié)果

  • 胚胎階段Apj在多種組織的血管內(nèi)皮細(xì)胞中表達(dá),但在成年階段表達(dá)減少

Apj-CreER小鼠與R26-GFP(條件性GFP報(bào)告基因)小鼠交配獲得Apj-CreER; R26-GFP小鼠。他莫昔芬處理以誘導(dǎo)Cre-loxP重組來(lái)標(biāo)記Apj+(GFP)細(xì)胞(下圖B)。胚胎階段,Apj在多個(gè)組織的血管內(nèi)皮細(xì)胞表達(dá),包括心臟,腦,肺,肝,腸和腎。成年小鼠中,他莫

昔芬處理8-10周齡的Apj-CreER; R26-GFP小鼠,10天后收集組織樣品并切片(下圖C)。通過(guò)對(duì)GFP和內(nèi)皮細(xì)胞標(biāo)記物PECAM的免疫染色發(fā)現(xiàn)Apj+細(xì)胞與胚胎期相比減少(下圖D)。也排除了Apj-CreER的漏表達(dá)。說(shuō)明Apj在發(fā)育中的胚胎的血管內(nèi)皮細(xì)胞中特異性表達(dá),并且其表達(dá)在成年小鼠中顯著降低。

圖片3.png?

Figure 1. Apj-CreER Sparsely Labeled Endothelial Cells in Adult Organs.?(A) Strategy for generation of Apj-CreER knockin allele. (B) Schematic figure showing genetic lineage tracing strategy. (C) Experimental strategy for tamoxifen induction and tissue collection. (D) Immunostaining for GFP and PECAM on tissue sections.

?

  • Apj在成年小鼠腫瘤血管中高度富集

由于腫瘤微環(huán)境高度缺氧,缺氧誘導(dǎo)Apelin/Apj軸驅(qū)動(dòng)的內(nèi)皮細(xì)胞增殖和血管再生,Apelin在缺氧環(huán)境下被誘導(dǎo)表達(dá),因此推測(cè)Apj在缺氧環(huán)境下也可能被上調(diào)。在Apj-CreER;R26-GFP小鼠中皮下接種與Matrigel混合的腫瘤細(xì)胞系TC-1、Hepa1-6和LLC ,并用他莫昔芬在腫瘤生長(zhǎng)期間標(biāo)記Apj+細(xì)胞(下圖A),結(jié)果發(fā)現(xiàn):在健康組織中很少能檢測(cè)到Apj-CreER標(biāo)記的血管內(nèi)皮細(xì)胞(包括心臟、腦、肺和肝)(下圖B);相反,在腫瘤組織中,大多數(shù)(超過(guò)95%)血管內(nèi)皮細(xì)胞均被GFP標(biāo)記(下圖B-E)。



圖片4.png?

Figure 2. Apj-CreER Labeled the Majority of Endothelial Cells in Xenograft Tumors, Chemically Induced Tumors, and Spontaneous Tumors.?(A) Experimental strategy for tamoxifen induction and tissue collection. (B) Quantification of the percentage of GFP+ endothelial cells in different organs and three xenograft tumor models. Data are mean ± SEM; n = 5. (C–E) Whole-mount fluorescence images of xenograft tumors (left). Immunostaining for GFP and PECAMon tumor sections (right). Boxed regions are magnified in the lower panel. (C) TC-1, (D) Hepa1-6, and (E) LLC.

?

另外通過(guò)將肝癌細(xì)胞(Hepa1-6)直接注射到Apj-CreER; R26-GFP小鼠的肝臟中建立原位腫瘤模型,二乙基亞硝胺(DEN)誘導(dǎo)建立肝癌模型(下圖F-I),MMTV-PyMT轉(zhuǎn)基因誘發(fā)乳腺癌模型(下圖J-M),都發(fā)現(xiàn)腫瘤組織中GFP+血管的百分比顯著高于周?chē)】到M織。這些數(shù)據(jù)說(shuō)明Apj在成年小鼠腫瘤血管中高度富集。


圖片5.png?

Figure 2. Apj-CreER Labeled the Majority of Endothelial Cells in Xenograft Tumors, Chemically Induced Tumors, and Spontaneous Tumors.?(F) Experimental strategy for DEN-induced liver tumor model and time schedule for tamoxifen induction and tissue analysis. (G) Whole-mount bright-field and fluorescence images of chemical induced tumor tissues. (H) Immunostaining for GFP and PECAM on sections of tumor tissues in (G). Boxed region is magnified on the right. (I) Quantification of the percentage of GFP+ endothelial cells in normal liver tissues and chemically induced tumors. *p < 0.05. Data are mean ± SEM; n = 5. (J) Experimental strategy for spontaneous mammary gland tumor model using Apj-CreER;R26-GFP;MMTV-PyMT mice and time schedule for tamoxifen induction and tissue analysis. (K) Whole-mount bright-field and fluorescence view of spontaneous tumor tissues. Boxed region is magnified on the right. (L) Immunostaining for GFP and PECAM on sections of tumor tissues in (K). Boxed region is magnified on the right. (M) Quantification of the percentage of GFP+ endothelial cells in normal mammary gland tissues and tumors.

?

  • 缺氧-VEGF信號(hào)調(diào)節(jié)腫瘤中Apj +血管擴(kuò)張

通過(guò)檢測(cè)組織缺氧和移植腫瘤細(xì)胞的增殖情況來(lái)分析腫瘤血管中Apj表達(dá)上調(diào)的機(jī)制(下圖A)。Hypoxyprobe和GFP染色顯示出兩個(gè)不同的區(qū)域:(1)腫瘤周邊區(qū)域——缺氧程度較低,富含GFP+血管;(2)腫瘤核心區(qū)域——高度缺氧且血管新生功能差(下圖B)。由于GFP作為遺傳譜系示蹤的熒光標(biāo)記,代表Apj曾經(jīng)表達(dá)過(guò),因此Apj+的細(xì)胞可能是Apj不表達(dá)但GFP仍維持標(biāo)記的。利用GFP和ESR的免疫染色來(lái)顯示Apj+細(xì)胞中CreER的持續(xù)表達(dá),結(jié)果發(fā)現(xiàn)ESR/Apj熒光信號(hào)富集在位于靠近腫瘤核心區(qū)域的內(nèi)皮細(xì)胞而不是周邊區(qū)域(下圖C)。體外低氧環(huán)境培養(yǎng)人臍靜脈內(nèi)皮細(xì)胞(HUVECs),Apj蛋白在缺氧條件下顯著增加(下圖D-E)。對(duì)EdU、GFP和PECAM的免疫染色顯示大量GFP+內(nèi)皮細(xì)胞摻入EdU,表明Apj+血管高增殖和血管生成擴(kuò)張(下圖F)。這些數(shù)據(jù)表明Apj+血管在腫瘤生長(zhǎng)期間被募集到缺氧區(qū)域,且其中Apj的表達(dá)可能受腫瘤缺氧調(diào)節(jié)。


圖片6.png?

Figure 3. Apj Expression Is Controlled by Hypoxia and Is Enriched in Hypoxic Tumor. ?(A) Schematic figure showing experimental strategy for induction of EDU and Hypoxyprobe. (B) Immunostaining for GFP and Hypoxyprobe on tumor section. (C) Immunostaining for GFP and ESR on tumor section shows that Apj expression is highly enriched in the region adjacent to tumor core. (D and E) Western blot of Apj protein from HUVECs cultured under normal or hypoxia conditions (D) and quantification of Apj expression (E). *p < 0.05. Data are mean ± SEM; n = 3. (F) Immunostaining for GFP, PECAM, and EdU on tumor section. Arrowheads indicate proliferating endothelial cells marked by Apj.

?

通過(guò)兩種缺血模型:后肢缺血和心肌梗塞(MI)進(jìn)一步驗(yàn)證缺氧是否調(diào)節(jié)Apj表達(dá)。在Apj-CreER; R26-GFP成年小鼠中進(jìn)行股動(dòng)脈結(jié)扎以建立后肢缺血損傷模型并在后肢組織中誘導(dǎo)缺氧環(huán)境。結(jié)果發(fā)現(xiàn),當(dāng)組織缺血和/或缺氧時(shí),血管內(nèi)皮細(xì)胞中的Apj表達(dá)確實(shí)增加了。

?

那么腫瘤組織缺氧環(huán)境中Apj+血管擴(kuò)張的分子機(jī)制究竟是什么?是不是通過(guò)VEGFA信號(hào)來(lái)調(diào)控的呢?通過(guò)將Kdr條件性敲除引入到Apj-CreER;R26-GFP小鼠中(交配獲得Apj-CreER;R26-GFP;Kdrfl/fl小鼠),導(dǎo)致VEGFR2表達(dá)缺失。荷瘤第3天開(kāi)始進(jìn)行他莫昔芬處理,并在10天后采集腫瘤組織樣本(下圖A)。他莫昔芬誘導(dǎo)Kdr基因敲除,導(dǎo)致Apj+血管內(nèi)皮細(xì)胞中VEGFR2表達(dá)缺失(下圖B)。在對(duì)照組Apj-CreER; R26-GFP; Kdr fl/+小鼠中腫瘤體積顯著增加,但Apj-CreER; R26-GFP; Kdrfl/fl小鼠中腫瘤體積沒(méi)有增加(下圖C)。VEGFR2信號(hào)缺失的小鼠與其它VEGFR2正常表達(dá)的對(duì)照組相比,腫瘤體積和腫瘤重量均有顯著差異(下圖D-F)。Apj-CreER; R26-GFP; Kdrfl/fl小鼠腫瘤中GFP+信號(hào)顯著減少(下圖G),PECAM +血管內(nèi)皮細(xì)胞密度顯著降低(下圖H和I)。這些數(shù)據(jù)都證明缺氧調(diào)節(jié)了Apj的表達(dá),缺氧-VEGF信號(hào)控制腫瘤形成中Apj+血管的擴(kuò)張。


圖片7.png?

Figure 4. Expansion of Apj+ Vessels in Tumor Growth Is Regulated by VEGF Signaling. (A and B) Schematic figure showing experimental strategy (A) and working principle for CreER-induced ablation of VEGFR2 (Kdr) gene (B). (C) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after implantation. *p < 0.05. Data are mean ± SEM; n = 6. ?(D) Image of tumors collected from Apj-CreER;R26-GFP;Kdrflox/flox mice or Apj-CreER;R26-GFP;Kdrflox/+ mice treated with tamoxifen. (E and F) Quantification of tumor volume (E) and tumor weight (F) of three different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (G) Whole-mount fluorescence view of GFP+ tumors. Inset is bright-field image. (H) Immunostaining for PECAM on tissue sections. (I) Quantification of vessel number per field (633). *p < 0.05. Data are mean ± SEM; n = 6.

?


  • 靶向Apj+血管的監(jiān)測(cè)和消融

利用新建立的Apj-DTRGFP-Luc基因敲入小鼠模型,可以在體內(nèi)實(shí)時(shí)監(jiān)測(cè)腫瘤中的Apj+血管。和之前的結(jié)果一致,腎臟、胰腺、心臟和腦等多個(gè)器官中的大多數(shù)血管內(nèi)皮細(xì)胞仍為GFP陰性(下圖B);相反,在腫瘤中的大多數(shù)PECAM+內(nèi)皮細(xì)胞中檢測(cè)到GFP和白喉毒素受體(DTR)表達(dá)(下圖C),表明腫瘤血管中的Apj表達(dá)激活。利用生物發(fā)光成像系統(tǒng),可以在體內(nèi)通過(guò)非侵入的方式實(shí)時(shí)監(jiān)測(cè)Apj+細(xì)胞(下圖D)。


圖片8.png?

Figure 5. Generation and Characterization of Apj-DTRGFP-Luc Mouse Line. (A) Schematic figure showing strategy for generation of Apj-DTRGFP-Luc allele by homologous recombination using CRISPR/Cas9. (B) Immunostaining for GFP and PECAM on tissue sections of Apj-DTRGFP-Luc mouse organs. (C) Immunostaining for GFP, DTR, and PECAM on tumor section of the same mouse. (D) One minute luminescent images of Apj-DTRGFP-Luc and littermate wild-type mouse after tumor (blue arrows) or Matrigel (white arrows) implantation.


通過(guò)兩種不同的方法來(lái)消融體內(nèi)Apj+血管,評(píng)估Apj+血管內(nèi)皮細(xì)胞死亡是否會(huì)影響腫瘤生長(zhǎng),從而判斷Apj+血管是否為腫瘤生長(zhǎng)所必需的。一種消融方法是對(duì)Apj-DTRGFP-Luc小鼠注射白喉毒素(DT)(下圖E)。注射DT的Apj-DTRGFP-Luc小鼠中腫瘤生長(zhǎng)顯著受到抑制(下圖F和G),腫瘤重量顯著降低(下圖H)。 GFP、DTR和PECAM的免疫染色證實(shí),注射DT后腫瘤中的血管生長(zhǎng)顯著被抑制(下圖I和J),但其他非腫瘤組織的正常器官中沒(méi)有發(fā)現(xiàn)任何明顯的血管密度下降或組織形態(tài)發(fā)生受損。?


圖片9.png?

Figure 5. Generation and Characterization of Apj-DTRGFP-Luc Mouse Line. (E) Schematic figure showing experimental strategy. DT, diphtheria toxin. (F) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after tumor implantation. *p < 0.05. Data are mean ± SEM; n = 6. (G) Picture of tumors from Apj-DTRGFP-Luc mice treated with DT or PBS. (H) Quantification of tumor weight of two different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (I) Immunostaining for GFP, DTR, and PECAM on tumors collected from Apj-DTRGFP-Luc mouse treated with DT or PBS. (J) Quantification of vessel number per 633 field. *p < 0.05. Data are mean ± SEM; n = 6. Scale bars, 200 mm.

?

另一種消融Apj+細(xì)胞的方法是,用R26-DTA(條件性表達(dá)DTA)小鼠交配獲得Apj-CreER; R26-GFP/DTA三陽(yáng)性小鼠并注射他莫昔芬,在Apj+細(xì)胞中誘導(dǎo)Cre-loxP介導(dǎo)的DTA表達(dá)(下圖A和B)。無(wú)他莫昔芬處理的對(duì)照組腫瘤體積升高;而他莫昔芬處理組,腫瘤體積沒(méi)有增加(下圖C)。Apj+細(xì)胞消融后,腫瘤體積和腫瘤重量均顯著被抑制(下圖D-F)。Apj-CreER; R26-GFP/DTA小鼠在他莫昔芬處理后,腫瘤中GFP+信號(hào)顯著減少(下圖G),PECAM +血管內(nèi)皮細(xì)胞密度顯著降低(下圖H)。同樣在其他非腫瘤組織的正常器官中沒(méi)有發(fā)現(xiàn)任何明顯的血管密度下降或組織形態(tài)發(fā)生受損。


圖片10.png?

Figure 6. Genetic Ablation of Apj+ Vessels Significantly Reduced Tumor Growth. (A and B) Schematic figure showing experimental strategy (A) and working principle for CreER-induced DTA expression for cell death (B). (C) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after implantation. *p < 0.05. Data are mean ± SEM; n = 6. (D) Picture of tumors from Apj-CreER;R26-GFP/DTA mice treated with tamoxifen (+ Tam) or corn oil (no Tam). (E and F) Quantification of tumor volume (E) and tumor weight (F) of three different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (G) Whole-mount fluorescence view of GFP+ tumors. Inset is bright-field view. (H) Immunostaining for PECAM on tissue sections and quantification of their number per 633 field. *p < 0.05. Data are mean ± SEM; n = 6.

?

  • Apj拮抗劑F13A抑制腫瘤血管生成和生長(zhǎng)

為進(jìn)一步了解腫瘤血管中Apj活化的病理學(xué)意義,并評(píng)估其作為治療靶標(biāo)的潛力,用Apj特異性拮抗劑F13A來(lái)抑制Apelin-Apj系統(tǒng)。此前,F(xiàn)13A是否可用于抑制腫瘤生長(zhǎng)尚未知。F13A丙氨酸(C-末端苯丙氨酸的代替物)與Apj的螺旋VI上的K268和Y264形成氫鍵相互作用(下圖A和B),還參與配體和受體之間的其他疏水和極性相互作用。在小鼠荷瘤模型中F13A能顯著延緩腫瘤生長(zhǎng)(下圖C和D),腫瘤體積和重量都得到顯著減少(下圖E-F)。更重要的是,F(xiàn)13A治療的腫瘤中存在大的無(wú)血管區(qū)域(下圖G)。F13A處理后腫瘤核心區(qū)域高度缺氧,且血管化的非缺氧區(qū)域顯著減少(下圖H)。



圖片11.png?

Figure 7. Treatment of Apj Antagonist F13A Inhibits Tumor Angiogenesis and Growth.?(A) Structural model of F13A-Apj complex. Green cartoon for the receptor Apj and yellow sticks for the peptide ligand F13A. This model is derived from the molecular dynamics model of Apelin-13 (AP13)-Apj complex on the basis of the crystal structure of Apj-AMG3054 (PDB: 5VBL). (B) Ligand-receptor binding interactions. F13A and Apj are labeled with red and black text, respectively. Magenta indicates F13A residue alanine (A13) that interacts with K268 and Y264 on Apj. Hydrogen-bonding interactions are indicated by black dashed lines. (C) Schematic figure showing experimental strategy. (D) Quantification of tumor volume (length 3 width2/2 [mm3]) at indicated time after implantation. Student’s t test was used to analyze differences, and values are shown as mean ± SEM; *p < 0.05; n = 8 for each time point. (E)?Pictures of tumors from PBS- or F13A-treated mice. (F) Quantification of tumor weight in (E). *p < 0.05. Data are mean ± SEM; n = 8. (G) Immunostaining for PECAM on tumor sections shows reduced vessel density in F13A-treated mice compared with PBS control.

體外培養(yǎng)HUVEC細(xì)胞給予F13A處理后,管樣結(jié)構(gòu)顯著減少(下圖I和J),且細(xì)胞遷移能力受損(下圖K和L)。此外,經(jīng)過(guò)系統(tǒng)分析F13A和PBS處理的心臟樣品,沒(méi)有發(fā)現(xiàn)F13A對(duì)其他器官中的血管穩(wěn)態(tài)沒(méi)有任何不良副作用??傊?,這些體內(nèi)和體外數(shù)據(jù)證明F13A能減少腫瘤血管生成并抑制腫瘤生長(zhǎng)。



圖片12.png?

Figure 7. Treatment of Apj Antagonist F13A Inhibits Tumor Angiogenesis and Growth.?(H) H&E staining, immunostaining for Hypoxyprobe on tumor sections shows thinner periphery and larger hypoxia core region and quantification of non-hypoxia region thickness. Data are shown as mean ± SEM; *p < 0.05; n = 8. (I) Tube formation analysis by HUVECs cultured on Matrigel. (J) Quantification of tube length per field. PBS-treated sample is set as 1. Data are shown as mean ± SEM; *p < 0.05; n = 4. (K) Migration assay by scratch on cultured HUVECs. (L) Quantification of migration distances at 6 and 24 hr after PBS or F13A treatment. Data are shown as means ± SEM; *p < 0.05; n = 4.

圖片13.png?

本文亮點(diǎn)

  • Apj是病理性血管新生的細(xì)胞表面標(biāo)志物,例如腫瘤血管新生Marker

  • 腫瘤血管中Apj的高表達(dá)受缺氧-VEGF信號(hào)調(diào)控

  • Apj+細(xì)胞可以被用作腫瘤的抗血管生成治療的治療靶標(biāo)


?


你也可能感興趣

Tamoxifen誘導(dǎo)Cre-ERT2小鼠 使用指南

Cre-ERT2在無(wú)Tamoxifen誘導(dǎo)的情況下,在細(xì)胞質(zhì)內(nèi)處于無(wú)活性狀態(tài);當(dāng)Tamoxifen誘導(dǎo)后,Tamoxifen的代謝產(chǎn)物4-OHT(雌激素類(lèi)似物)與ERT結(jié)合,可使Cre-ERT2進(jìn)核發(fā)揮Cre重組酶活性。

查看
【小鼠大學(xué)問(wèn)】基因工程小鼠的命名規(guī)則

常見(jiàn)的基因工程小鼠可以分為兩種命名方式,包括基因定點(diǎn)修飾的小鼠命名,比如:敲除、敲入、點(diǎn)突變等等,和隨機(jī)轉(zhuǎn)基因的小鼠命名。

查看